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Hydroponics is the soil less agriculture farming, which consumes less water and other resources as compared to the traditional
soil-based agriculture systems. However, monitoring of hydroponics farming is a challenging task due to the simultaneous
supervising of numerous parameters, nutrition suggestion, and plant diagnosis system. But the recent technological
developments are quite useful to solve these problems by adopting the artificial intelligence-based controlling algorithms in
agriculture sector. Therefore, this article focuses on implementation of mobile application integrated artificial intelligence based
smart hydroponics expert system, hereafter referred as AI-SHES with Internet of Things (IoT) environment. The proposed AI-
SHES with IoT consists of three phases, where the first phase implements hardware environment equipped with real-time
sensors such as NPK soil, sunlight, turbidity, pH, temperature, water level, and camera module which are controlled by
Raspberry Pi processor. The second phase implements deep learning convolutional neural network (DLCNN) model for best
nutrient level prediction and plant disease detection and classification. In third phase, farmers can monitor the sensor data and
plant leaf disease status using an Android-based mobile application, which is connected over IoT environment. In this manner,
the farmer can continuously track the status of his field using the mobile app. In addition, the proposed AI-SHES also
develops the automated mode, which makes the complete environment in automatic control manner and takes the necessary
actions in hydroponics field to increase the productivity. The obtained simulation results on disease detection and classification
using proposed AI-SHES with IoT disclose superior performance in terms of accuracy, F-measure with 99.29%, and 99.23%,
respectively.

1. Introduction

IoT in agriculture might be a game changer for humans and
the whole planet [1]. We are now seeing how harsh weather,
eroding soil, drying areas, and collapsing ecosystems make

food production more difficult and costly. Meanwhile, we
are not getting any fewer. According to a well-known forecast,
there would be more than 9 billion people in 2050. Fortu-
nately, owing to quickly emerging technology and IoT applica-
tions [2] for smart farming, there is still hope. According to
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analysts, this industry will reach 23.14 billion US dollars by
2022, with 75 million IoT devices implemented for agricul-
tural applications in the following several years. The Internet
of Objects is all about making “dumb” things “smart” by link-
ing them to one another and to the Internet. It permits the
remote sensing and control of physical things, allowing for
more direct integration of the real world with computer-
based systems [3, 4]. IoT allows devices equipped with sensors
to communicate and interact with one another via the Inter-
net. Pumps, barns, and tractors, as well as weather stations
and computers, may all be remotely monitored and operated
in real time. Agriculture is the only source for food production
in many countries including Ethiopia, India. It is a wealthy
industry, but over the years, people and work force involved
in this industry are reducing drastically. The traditional farm-
ing face lots of challenges for increasing the productivity [5].
Some of the challenges in rural areas are the global climate
changes, pollutions, loosing soil integrity to grow the crops,
rapid increment in urbanization, and agricultural land sacristy
etc.. Therefore, farmers need to employ smart farming as
shown in Figure 1, which can help in increasing the food yield
production [6]. In addition, these new methods of farming
along with traditional farming methods need some technolog-
ical backing to counter global food crisis. To meet these chal-
lenges, it is necessary to adopt new technologies in farming
like hydroponics, vertical forming, and polyhouse. Among
those, the hydroponics is the best farming method, which
directly involves with the technological requirements.

Some of the problems presented in the hydroponics are
seedling (wilting, dead roots), system clogging, infestation
(algae, pest), and nutrient deficiencies [7]. Because seedlings
are susceptible to issues when they are in the beginning stages
of their development, one of the most difficult tasks in the pro-
cess of producing plants in hydroponics is cultivating healthy
seedlings. Wilting occurs when a plant loses its stiffness, and
its leaves begin to dry up. Wilting may be caused by a number
of circumstances, including insufficient watering or extreme
temperature [8]. There are a variety of factors that may con-
tribute to dead roots, including the water’s high temperature,
a very high or extremely low EC, and over watering in thick
substrates. Roots that have died might be an indication that
a root rot pathogen is present in the system. It is generally
agreed that clogging is the issue that arises most commonly
in hydroponic systems, and this is particularly true for drip-
style systems. The majority of the time, the tubes get clogged
as a result of fragments of the growth media that become
lodged inside of them. The circulation of the whole system is
disrupted when there is clogging, which may cause significant
harm to your crops. There is no way for producers to
completely eliminate the risk of infection in hydroponic farms,
no matter how well they manage their operations. During the
early stages of an infestation, there are a few actions that you
may do to combat the problem. In most cases, a grower will
be able to identify a specific nutrient deficit by evaluating the
symptoms, but this method is not fool proof and may occa-
sionally lead to incorrect conclusions [9]. Checking the water
temperature, pH of the nutrient solution, and electrical con-
ductivity of the solution should come first before determining
whether or not there is an issue.

Recently, AI-based autonomous robots with a variety of
hardware controllers and industrial robots are playing the key
role in hydroponics for minoring of plants [10]. However, they
are failed to monitor the multiple sensors at the same time to
solve the above-mentioned problems. Another major challenge
presented in the traditional farming and hydroponics is the
plant diseases, which affect the growth of plants and thereby
reduce the productivity. Traditionally, either farmers are manu-
ally classifying the diseases or pathologist are identifying the dis-
ease through lab experiments. However, the performance of
traditional systems is purely depending on their experience,
and it also a time-consuming task [11, 12]. Further, the early
detection and prevention of plant diseases can improve the
hydroponics performance. Therefore, recently, image
processing-based computer aided methods are widely devel-
oped for benefit of the farmers. Thus, image processing technol-
ogies for early detection and diagnosis is preferred [13], which is
done by using color feature extraction, texture extraction, and
shape feature extraction. To overcome these problems, the
major contributions of these works are illustrated as follows:

(i) Design and implementation of AI-SHES by inte-
grating Raspberry Pi controller, IoT environment
with mobile application

(ii) Implementation of user-friendly environment for
farmers using Agri-Hydroponic application, which
provides hybrid monitoring and controlling of
hydroponics farm field

(iii) Development of IoT based cloud environment for
global monitoring of sensor data

(iv) In addition, an AI framework is implemented for
alerting, and predictive analytics of sensor data,
and plant diseases

Rest of the article is organized as follows: Section 2 deals
with the literature survey with problems. Section 3 deals

Disease prediction
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Figure 1: Sample illustration of smart farming.
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with the detailed implementation of proposed AI-SHES. Sec-
tion 4 deals with the detailed analysis of experimental
results. Section 5 deals with the conclusion and future scope.

2. Literature Review

This section deals with the detailed analysis of existing
methods with the drawbacks. In [14], the authors developed
the Internet of Everything (IoE), which is considered a mod-
ern platform for advancement of IoT. This system consid-
ered the advanced soil sensors for monitoring the crop
field. However, the proposed system conserves higher energy
and decreases the efficiency, while calculating the heat index
of the parameters to observe the surrounding for growth of
crops. Further, efficient management of irrigation system
(EFIS) [15] is developed for automatic water controlling to
avoid the water sacristy problems in Ethiopia, Kenya, and
South Africa countries. This work jointly monitors the soil
conditions with water levels. However, this system reduces
the current intake of the parameters and reduces the data
transmission range of the system. Further, a machine learn-
ing model known as support vector machine (SVM) [16] is
developed for plant disease classification along with the sen-
sor data. In this model, a camera model equipped controller
is designed with moisture, color, texture, humidity, and tem-
perature of the leaf. However, this method suffers with the
high computational complexity. In [17], authors focused
on implementation of calculational intelligence technique
for prediction and utilization of nitrogen in wheat crops.
The calculation depends on the analysis of image of crops,
which are captured the image in the real time field with dif-
ferent time samples and different lighting conditions. Fur-
ther, artificial neural network with genetic algorithm
(ANN-GA) is used to classify the plant diseases. However,
this method suffers with the low classification accuracies.
Further, MicConvNet [18] classifier is developed for red
palm weevil larvae detection in initial stage for protection
of date trees. This detection system consists of based on a
modified mixed depth wise convolution network. Anyhow,
this method did not implement the IoT environment due
to complexity issues. Further, hybrid convolutional neural
network (HCNN) [19] is trained with dual image database.
The database consists of previously infected images, which
is used for training the database for such diseases. Secondly,
texture, color, and morphology features are extracted from
image. However, this method consumed higher training
time for feature training.

In [20], the authors integrated the deep learning with
IoT for automatic disease identification from plants. The
IoT is used for remote sensing of field parameters storage,
with modified ResNET51 model which was used on the
cloud for purpose of building smart disease detection. This
method suffers with the low classification performance. In
[21], the authors developed the mobile application, which
displays the sensor values in efficient manner by adminis-
trating the field. Further, IoT is used to store the disease
affected region with specific classes. Further, DeepLens [22]
variations are introduced for continuous monitoring of data
with ubiquitous access and reliability, which is accessed by

cloud data integrating with recursive CNN classification.
The RCNN is used to identify the condition of leaves of fruit
trees and vegetable plan. However, this method is not useful
for diagnosis of hand full of plants and trees diseases detec-
tion. In addition, AI and IoT enabled smart agriculture tech-
nologies’ [23] system is developed with decision tree
classification. The data from the hardware is processed by
AI, which contains valuable data for prediction of the all
the parameters of crop. However, this method suffering with
power related issues in real time environment. In [24], the
authors implemented the AI-based agriculture system with
IoT environment, and this method gives the feedback to
farmer for ideal maintaining of the crop production. The
AI system utilizes fuzzy logic for predicting types of crop
type, soil integration and weather conditions. In [25], the
authors implemented the hydroponic automation system
for plant growth analysis from seed stage to yield stage. Fur-
ther, ESP32 microcontroller is used for controlling of differ-
ent sensors and actuators. Further, LOTUS mobile
application was updated with humidity, irrigation, and tem-
perature monitoring. However, this method is a high com-
putational complexity. In [26], the authors implemented
the hybrid system with multiple monitoring parameters such
as nutrient level, pH, and temperature of the water. Further,
K-Nearest Neighbor– (KNN–) based machine learning
approach is used to automate these parameters according
to reference water levels generated by nutrient film tech-
nique. However, this method has low reliability and effi-
ciency as compared to deep learning models.

3. Proposed Methodology

This section gives the detailed implementation analysis of
AI-SHES, which is developed by integrating the Raspberry
Pi, IoT environment with mobile application. Figure 2 shows
the architecture of proposed AI-SHES. An AI-SHES is devel-
oped with the user-friendly environment for farmers using
Raspberry Pi controller, IoT environment with Agri-
Hydroponic application. The farmers monitor and control
their hydroponics farm field using Agri-Hydroponic appli-
cation with manual and automatic controlling modes of
operation. The Raspberry Pi controller-based hardware sys-
tem is placed in hydroponics farm field, which monitors the
statics of plants using different sensors. Further, all these
sensors’ data is uploaded into cloud based IoT environment.
An artificial intelligence system is placed across the cloud
served with DLCNN, which continuously monitors the sen-
sor data and plant disease status and sends the necessary
alerts to the farmers using Agri-Hydroponic application.
Finally, the farmer controls his hydroponics farm field dur-
ing manual mode, so nutrients are supplied to plants as
per farmer mentioned levels. In addition, the nutrients are
applied to plants with standard reference levels during auto-
mated mode of operation.

3.1. Hardware Environment. The proposed AI-SHES imple-
mented with the Raspberry Pi controller with the different
types of sensors. Figure 3 shows the hardware environment
of proposed AI-SHES. This environment uses different
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sensor for analysis of different parameters in the hydropon-
ics farming methods. The proposed AI-SHES controls the
parameters such as temperature, water level, water with
nutrient considered fresh water, excessive sunlight, drain
water, and cooler for temperature reduction.

Further, sensor values are continuously updated in IoT-
based cloud environment. Here, the grove sunlight sensor
is used for analysis of sunlight, which generates the parame-
ters of light in the sun rays such as IR rays, UV rays, and vis-
ible rays. These sensor parameters can used to determine the
amount of photosynthesis taking place inside the leaf of the
plant. The SHT-20 sensor is used for parameters such as
temperature and humidity of atmosphere. In hydroponics
farming, it is important to measure the minerals present in
water continuously, because the nutrients are supplied to
the plant’s trough the water only. Therefore, the hardware
environment of hydroponic system requires the greater
number of water sensors. The DS18B20 waterproof probe
sensor is used to measure the water temperature. Further,
SEN0161 water sensor also used for extracting the PH levels
such as acidic and basic nature of the water. Then, WQ730
turbidity sensor is used to extract the turbidity of water. Fur-
ther, NPK sensor is used to measure the amount of nitrogen,
phosphorus, and potassium levels present in water, which
acts as an alternative to soil moisture sensor. In addition,
hydrostatic pressure level sensor also used for measuring
the different water levels. Additionally, camera modules cap-
ture the images of plants with the specified time scale.

Finally, the Raspberry Pi receives all sensor values and
images and sends these data to the DLCNN model of cloud
server. Here, the Prediction-DLCNN model is effectively
used to identify the nutrient deficiency of plants, which pre-
dicts the standard nutrient levels through comparison with
trained reference levels. The plants also suffer with the dif-
ferent types of diseases due to nutrient’s deficiency, so it is
necessary to identify the plant diseases in early stage. There-
fore, the Classification-DLCNN model is used to identify the
different types of plant diseases form the camera captured
images. Finally, the DLCNN model sends this information
to the Agri-Hydroponic application, where the farmer

selects the mode of operation. Finally, the farmer controllers
his hydroponics farm field during manual mode, so nutri-
ents are supplied to plants as per farmer mentioned levels.
In addition, the nutrients are applied to plants with standard
reference levels during automated mode of operation. Fur-
ther, the Raspberry Pi controllers control the output actua-
tors (devices) based on the mode of operation generated by
DLCNN environment. Therefore, the output devices such
as motor and pump are controlled by this mode of operation
directly from the mobile application. Here, two different
pumps are used for pumping nutrient water and normal
water, and they are supply water to plants till all the minerals
and nutrients are observed. Further, heater output device is
used to control water and air temperature inside the hydro-
ponics structure. In addition, motors are used to regulate the
sunlight intensity by controlling the outer environment of
farm field.

3.2. AI-Based IoT Cloud Server. The AI-SHES system con-
tains two DLCNN models named as Prediction-DLCNN and
Classification-DLCNN, which are placed at the cloud server.
Here, the Prediction-DLCNN model is used to estimate the
perfect nutrient levels based on reference values. Further, the
Classification-DLCNN model is used to identify the different
types of plant diseases. In addition, the operation of both
models was performed in a parallel manner and updates the
values to the farmer through mobile application. Figure 4 pre-
sents the architecture of Prediction-DLCNN. Here, input fea-
ture matrix is generated by concatenating the sensor data.
Initially, the sensor data is monitored in the hydroponics filed
during different environment conditions. Then, the Raspberry
Pi controller controls this data and transfers to IoT cloud.
Then, the Prediction-DLCNN models take these sensor data
as test input. The DLCNN model is trained with the reference
nutrient dataset, where the dataset contains the perfect nutri-
ent levels according to the different sensor conditions. The
dataset is formed in different environmental conditions, so
the Prediction-DLCNN model perfectly estimates the new
nutrient values for every combination of sensor data in all
atmospheric conditions.

IoT cloud server

Hybrid DLCNN
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Figure 2: Proposed architecture of AI-SHES with IoT.
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Figure 5 shows the architecture of Classification-
DLCNN model, and Table 1 lists the description of layers
employed in this architecture. The images captured in
hydroponics filed are updated into IoT cloud through Rasp-
berry Pi controller, and the same images are applied as input
Classification-DLCNN model. The plants are suffering with
different types of diseases due to nutrient deficiencies and
disease attacks. Therefore, the proposed Classification-
DLCNN model is capable of identifying the different types
of diseases presented in plant images. Further, these disease
classes and sensors’ data monitored during test image cap-
tured time are applied as input to the Prediction-DLCNN

model. Now, the Prediction-DLCNN model estimates the
new nutrient values based on input data. Finally, these infor-
mation transfer to the farmer through Agri-Hydroponic
application.

3.3. Agri-Hydroponic Application. The farmers monitor the
sensor data and plant images continuously through the
Agri-Hydroponic application. Further, the farmers can con-
trol the different types of motors, actuators, and output
devices placed in the hydroponic farm field using Agri-
Hydroponic application as shown in Figure 6. In order to
provide the security to the famers data, the application is
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Figure 3: Hardware environment of AI-SHES system.
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Figure 4: Architecture of Prediction-DLCNN model.
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developed with login page as shown in Figure 6(a). There-
fore, intruders cannot control the field and cannot access
the application. The RSA- and SHA-based hybrid security
protocols are used in the application for maximum security.
After successful login, the farmer can monitor and control
the field using “plant disease prediction,” “farm sensor data,”
and “farm controlling” buttons as shown in Figure 6(b). In
the “farm sensor data” page, the different types of sensor
data (water level, water turbidity, water pH UV light, visible
light, IR light, air temperature, and water temperature, nitro-
gen, phosphorus, and potassium levels) are displayed as
shown in Figure 6(c). The farmers can select the zone of
hydroponics farm, which is divided into many sectors
according to plantations. Therefore, the data is displayed
based on average of all zones, whereas the farmer can also
monitor individual zone-specific information. Further, the
“farm controlling” operation is performed in two modes of
operation such as automatic and manual modes as shown
in Figure 6(d).

The farmers can control the devices presented in hydro-
ponic filed during manual mode through Raspberry Pi con-
troller as shown in Figure 6(e). Here, UV light, visible light,
and IR light-based sunlight parameters are improper; then,
the motors control the poly-cloth placed at the hydroponic

farm. So the poly-cloth will regulate the light intensity by
multiple layers. Further, air conditioner is manually con-
trolled from the application based on air and water temper-
ature levels. In addition, moisture inside the farm field also
controlled based on humidity of the atmosphere. Moreover,
the nutrient water supplied to plants also controlled by the
drain water and freshwater motors based on nitrogen, phos-
phorus, and potassium mineral levels. All these input sensor
data are monitored, and output devices are controlled auto-
matically by Raspberry Pi controller during the automatic
mode selection by the farmer in the application as shown
in Figure 6(f). The farmers can also monitor the diseases
presented in the plants during “plant disease classification
page.” The Classification-DLCNN model classifies the type
of plant diseases and transfers to the “plant disease classifica-
tion page” as shown in Figure 6(g). Here, the farmer can
manually capture the images by his own, and
Classification-DLCNN model identifies the disease. Finally,
the selected action (mode) of farmers is sent to the Rasp-
berry Pi controller to control output devices though IoT
cloud server.

4. Results and Discussion

This section gives the experimental and simulation results of
proposed AI-SHES with IoT system. In addition, it also pro-
vides the performance of proposed Prediction-DLCNN and
Classification-DLCNN models compared to the state-of-the
art approaches using standard nutrition and plant leaf
datasets.

4.1. Dataset Description

4.1.1. NUOnet (Nutrient Use and Outcome Network). This
dataset is collected by Agricultural Collaborative Research
Outcomes System (AgCROS), which is a publicly available
dataset. The most effective methods of nutrient management
are very necessary for ensuring successful economic returns,
preserving greater yields, minimizing negative effects on the
environment, maximizing nutritional quality, and delivering
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Table 1: Layer-wise analysis of Prediction-DLCNN and
Classification-DLCNN models.

Layer name No. of filters Filter size Feature size

Conv2D-1 32 3x3 62x62

MaxPooling2D-1 32 2x2 31x31

Conv2D-2 64 3x3 29x29

MaxPooling2D-2 64 2x2 14x14

Flatten — — 1x12544

Dense-1 — — 1x128

Dense-2 — — 1x15

SoftMax — — 1x4
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Figure 6: Continued.
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ecosystem services. Nutrient losses from agricultural systems
may be reduced by using best management practices, which
are techniques that increase the efficiency with which nutri-
ents are used. This collection includes crop composition data
derived from investigations that were carried out over the
course of a number of years in sites all over the globe. The
information that it carries offers some understanding of
the inherent variation that exists in the nutritional profile
of hydroponic crops.

4.1.2. PlantVillage Dataset. PlantVillage is a well-known and
extensively used database that can be accessed without cost

and is used for the training and testing of CNN models.
Additionally, the database is frequently utilized. The Plant-
Village collection has 20798 color leaf photos with a con-
stant background. Additionally, the collection contains 19
crop-disease pairs. To accomplish the prediction and classi-
fication objective of this study, the given dataset is parti-
tioned into train, test, and validation subsets using an 80-
10-10 splitting ratio. As a result, there are a total of 16638
images in the training set (i.e., 80% of available dataset),
2130 images for training (i.e., 10% of total dataset), and
another 10% for validation. Normalization was considered
by dividing the pixel values by 255. This was done to make
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Figure 6: Agri-Hydroponic application options. (a) Login page. (b) User-access menu. (c) Sensor data. (d) Modes of operation. (e) Manual
mode controlling. (f) Automatic mode controlling. (g) Plant disease classification page.
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Figure 8: Classified plant diseases using DLCNN.
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the images more acceptable for the beginning values of the
models, which was accomplished by dividing the pixel values
by 255. The images were resized to a size of 224 × 224 × 3
pixels, and their dimensions were changed to reflect this.
Rice brown spot, rice healthy, rice leaf blast, rice leaf blight,
pepper bell healthy, and pepper bell bacterial spot are all
included in this dataset. Tomatoes may be susceptible to a
variety of pests and diseases, including the tomato healthy
disease, the tomato mosaic disease, the tomato yellow leaf
curl disease, and the tomato target spot disease.

4.2. Hardware Setup. Figure 7 shows the hardware setup of
proposed AI-SHES with IoT, which is working model and

integrated with Raspberry Pi controller with sensors, cloud
server, and Agri-Hydroponic application. Here, the sensors
placed in different zones of field are controlled by Raspberry
Pi; then, these data are transferred to the laptop equipped
cloud server. Magnesium and calcium are measured according
to crop requirement, and we place magnesium and calcium
probes in water/soil to measure these. For example, spinach
has high volume of magnesium, hence we will provide magne-
sium rawmaterials in water. This will be similar with even cal-
cium as well. For sulfur, we have sulfur gas sensor, and we can
measure by boiling small amount of water and measure the
contents of sulfur in water. Further, the farmers monitor and
control the field using Agri-Hydroponic application through

Table 2: Prediction-DLCNN response.

Devices Sample 1 Sample 2 Sample 3

Sensor data

Sunlight HIGH LOW LOW

Air temperature (°C) 38 30 28

Water temperature (°C) 32 28 30`

pH 6 8 7

Turbidity (%) 80 30 40

NPK 72 65 80

Predicted nutrients

Nitrogen (mg/kg) 25 26 31

Phosphorus (mg/kg) 39 40 42

Potassium (mg/kg) 41 50 36

Magnesium (mg/kg) 157 142 138

Sulphur (mg/kg) 3500 3150 3420

Calcium (mg/kg) ON OFF OFF

Output actuator action during automatic mode

Fresh water pump OFF ON ON

Drain water pump ON OFF OFF

Cooler ON ON OFF

Motor HIGH LOW LOW

Table 3: Performance estimation of Prediction-DLCNN model.

Method Accuracy (in %) Precision (in %) Recall (in %) F-measure

EFIS [15] 90.898 92.514 90.355 91.673

SVM [16] 92.960 94.117 91.518 93.234

MicConvNet [18] 93.264 95.515 92.885 94.596

RCNN [23] 94.599 96.889 93.614 95.845

Prediction-DLCNN 99.82 98.64 99.937 99.283

Table 4: Performance estimation of Classification-DLCNN.

Method Accuracy (in %) Precision (in %) Recall (in %) F-measure

KNN [13] 89.28 88.384 88.24 83.484

ANN-GA [17] 90.898 92.514 90.355 91.673

HCNN [19] 92.960 94.117 91.518 93.234

ResNET51 [20] 93.264 95.515 92.885 94.596

Prediction-DLCNN 99.297 99.382 98.58 99.237
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electronic devices like mobile phones and tablets. It also shows
the output devices like water motors controlling the supply of
water in hydroponics field.

4.3. Results of AI-Based IoT Cloud Server. Figure 8 shows the
classified plant diseases using DLCNN model. The proposed
model accurately classified the apple scab, cherry powdery
mildew, corn northern leaf blight, grape black rot, grape leaf
blight, orange disease, peach bacterial spot, potato early
blight, squash powdery mildew, strawberry leaf scorch,
tomato early blight, and tomato late blight diseases.

Table 2 presents the Prediction-DLCNN response for
three samples of sensor data. Here, sample-1 data is consid-
ered during rainy season, sample-2 data is considered during
winter season, and sample-3 data is considered during sum-
mer season. The Prediction-DLCNN analyzed these sensor
data and resulted in the perfect predicted nutrients. Further,
Table 2 also presents the output action of actuators during
automatic mode of operation.

Table 3 shows that the proposed Prediction-DLCNN
model accurately estimated the nutrient values as compared
to state-of-art approaches like EFIS [15], SVM [16], Mic-
ConvNet [18], and RCNN [23]. These conventional
methods considered the reference data during perfect atmo-
spheric conditions, so they failed to result in the best predic-
tion for all environmental situations. In addition, these
conventional methods considered a smaller number of input
sensors as compared to proposed system, which is also
impacted the nutrition prediction performance.

Table 4 shows the disease detection and classification
performance of proposed Classification-DLCNN. Here, the
proposed method resulted in superior performance as com-
pared to conventional methods like KNN [13], ANN-GA
[17], HCNN [19], and ResNET51 [20] for all performance
metrics.

5. Conclusion

This article presented the design and implementations of AI-
SHES with IoT, which is developed by integrating the Rasp-
berry Pi, IoT environment with mobile application. The
farmer observes and manages his hydroponics farm field
using the Agri-Hydroponic program, which has manual
and automated control modes. A Raspberry Pi controller-
based hardware design is installed in a hydroponics farm
field to monitor plant statics using various sensors. Further-
more, the data from these sensors is transferred to a cloud-
based IoT system. An AI system is deployed in the cloud ser-
viced by DLCNN, which continually analyzes sensor data,
plants disease condition, and gives alerts to farmers via the
Agri-Hydroponic application. Finally, the farmer operates
his hydroponics farm field in manual mode, ensuring that
nutrients are provided to plants at the amounts specified
by the farmer. Furthermore, nutrients are applied to plants
at specified reference levels during automated mode of oper-
ation. This system can be extended with hybrid deep learn-
ing architectures and optimization methods.

Data Availability

The data used to support the findings of this study are
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